Муниципальное казённое общеобразовательное учреждение «Средняя общеобразовательная школа №4»

«Рассмотрено» «Согласовано» «Утверждаю» Заседанием Зам.директора по ВР Педагогического совета Протокол № 1 Искмазова И.Н. МКОУ СОП № А.П. Дорохова СПриказ № 11 От «11» ОВ 2023 г

ПРОГРАММА внеурочной деятельности общеинтеллектуального направления «ФИЗИКУМ» для учащихся 11 класса

Составитель: Литвинова Ирина Алексеевна. Учитель физики. Высшая категория.

с.Новомихайловское 2023-2024 учебный год

1. Пояснительная записка

Рабочая программа по внеурочной деятельности «Физмкум» предназначена для обучающихся 11 класса МКОУ СОШ №4 села Новомихайловского Красногвардейского муниципального округа Ставропольского края. Реализация программы обеспечивается нормативными документами:

- Федеральным законом "Об образовании в Российской Федерации" от 29.12.2012 N 273-ФЗ;
- Приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (в редакции приказа Минобрнауки России от 31 декабря 2015 г. № 1577);
- Приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования» с изменениями, утверждёнными приказами Министерства образования и науки Российской Федерации №1645 от 29.12.2014 г., № 1578 от 31.12.2015 г., № 613 от 29.06.2017 г.
- Концепцией духовно-нравственного развития и воспитания личности гражданина.
- СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»: постановления Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 № 189.

Внеурочная деятельность является составной частью образовательного процесса и одной из форм организации свободного времени обучающихся. В рамках реализации ФГОС ООО внеурочная деятельность — это образовательная деятельность, осуществляемая в формах, отличных от урочной системы обучения, и направленная на достижение планируемых результатов освоения образовательных программ основного общего образования. Программа «Физикум» относится к общеинтеллектуальному направлению внеурочной деятельности.

2. Общая характеристика курса

Физика как наука о наиболее общих законах природы вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Программа призвана углубить и расширить предметные знания школьников в сфере естественных наук, позволить проявить способности самостоятельно мыслить и рассуждать, по-казать организаторские способности и навыки проектной деятельности.

Целью программы является совершенствование познавательной сферы обучающихся и обеспечение таких условий, где одаренный ребенок сможет достигнуть максимально возможного для него уровня развития.

Задачи программы:

- ✓ Сформировать умения работать с различными источниками информации.
- ✓ Выработать исследовательские умения.
- ✓ Познакомить учащихся с исходными философскими идеями, физическими теориями и присущими им структурами, системой основополагающих постулатов и принципов, понятийным аппаратом, эмпирическим базисом.
- ✓ Сформировать представление о современной физической картине мира, о месте изучаемых теорий в современной ЕКМ и границах применимости.
- ✓ Углубить интерес к предмету за счет применения деятельностного подхода в изучении курса, подборке познавательных нестандартных задач.
- ✓ Сформировать у учащихся умения применять физические знания различного уровня общности, таких как конкретных законов физических теорий, фундаментальных физических законов, методологических принципов физики к решению задач по механике, электричеству, термодинамике, оптике.
- ✓ Сформировать у учащихся умения применять методы экспериментальной, теоретической и вычислительной физики к решению задач по механике, электричеству, термодинамике, оптике.
- ✓ Сформировать у учащихся умения к проведению конкретного анализа экспериментально наблюдаемых явлений.
- ✓ Сформировать у учащихся умения организации познавательной деятельности при обуче-

3. Планируемые результаты

В направлении личностного развития:

- -сформированность познавательных интересов на основе развития интеллектуальных итворческих способностей;
- -убежденность в возможности познания природы, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- -самостоятельность в приобретении новых знаний и практических умений;
- -готовность к выбору жизненного пути в соответствии с собственными интересами ивозможностями;
- -формирование ценностных отношений друг к другу, учителю, авторам открытий иизобретений, результатам обучения.

В метапредметном направлении:

регулятивные УУД:

- -самостоятельно определять цели, ставить и формулировать собственные задачи вобразовательной деятельности;
- -оценивать ресурсы, необходимые для достижения поставленной ранее цели;
- -сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- -определять несколько путей достижения поставленной цели;
- -задавать параметры и критерии, по которым можно определить, что цель достигнута;
- -сопоставлять полученный результат деятельности с поставленной заранее целью. познавательные УУД:
- -искать и находить обобщённые способы решения задач; приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека; -анализировать и преобразовывать проблемно-противоречивые ситуации;
- -занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться):

коммуникативные УУД:

- -осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми;
- -при осуществлении групповой работы быть как руководителем, так и членом в разныхролях (генератором идей, критиком, исполнителем),
- -развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- -согласовывать позиции членов команды в процессе работы над общим решением;
- -воспринимать критические замечания как ресурс собственного развития. В предметном направлении:
- -распознавать и объяснять на основе имеющихся знаний свойства или условия протеканияявлений,
- -описывать свойства тел и явлений, используя физические величины, при описании, вернотрактовать физический смысл используемых величин, их обозначения и единицыизмерения;
- -находить формулы, связывающие данную физическую величину с другими величинами.
- -анализировать свойства тел, явлений и процессов, используя физические законы, при этом различать словесную формулировку закона и его математическое выражение.
- -приводить примеры практического использования физических знаний о явлениях,
- -решать задачи, используя физические законы и формулы, связывающие физические величины, на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.
- -различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- -использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- -находить адекватную предложенной задаче физическую модель, разрешать проблему как на

основе имеющихся знаний с использованием математического аппарата, так и при помощи методов оценки.

4. Содержание курса

Постоянный электрический ток (5 часов).

Электрический ток. Сила тока. Закон Ома для участка цепи. Последовательное и параллельное соединения проводников. Измерения силы тока и напряжения. Работа тока и закон Джоуля—Ленца. Мощность электрического тока. Закон Ома для полной цепи. Следствия из закона Ома для полной цепи.

Задачи на различные методы расчета сопротивления электрических цепей постоянного тока: метод анализа узловых потенциалов, метод наложения контурных токов как проявление принципа суперпозиции. Использование симметрии при анализе электрических цепей. Задачи разных видов на описание электрических цепей постоянного тока с помощью закона Ома для замкнутой цепи, закона Джоуля – Ленца, законов последовательного и параллельного соединений. Решение задач на расчет участков цепей, содержащих ЭДС. Задачи для ознакомления учащихся физикоматематических школ с правилами Кирхгофа для расчетов разветвленных электрических цепей постоянного тока. Задачи на иллюстрацию идеи относительности по отношению к средствам наблюдения на примере разных показаний электроизмерительных приборов при различных способах их включения в цепь. Экспериментальные задачи на изучение электрической схемы, содержащейся в "черном ящике". Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, вольтамперная характеристика, характеристика конкретных явлений и др.

Электродинамика (6 часов).

Природа электричества. Взаимодействие электрических. Электрическое поле. Графическое изображение электрических полей. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Потенциальная энергия заряда в электростатическом поле. Связь между разностью потенциалов и напряжённостью. Электроёмкость. Электроёмкость плоского конденсатора.

Задачи на применение закона сохранения заряда. Задачи на применение закона Кулона. Задачи на применение понятий напряженности, потенциала и разности потенциалов электростатического поля. Задачи на описание электрического поля различными средствами: силовыми линиями, эквипотенциальными поверхностями. Решение задач на описание систем конденсаторов и расчет характеристик конденсаторныхцепей. Задачи на расчет энергии электрического поля.

Магнитные взаимодействия (4 часа).

Взаимодействие магнитов и токов. Магнитное поле. Сила Ампера и сила Лоренца. Линии магнитной индукции.

Качественные задачи на исследование магнитного поля постоянного тока. Задачи на закон Ампера. Задачи о движении заряженных частиц в электрическом и магнитном полях. Качественные и расчетные задачи на описание явления электромагнитной индукции, на закон электромагнитной индукции, на правило Ленца, на использование понятия индуктивности, на расчет энергии магнитного поля.

Электромагнитное поле (3 часа).

Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца. Явление самоиндукции. Энергия магнитного поля. Производство, передача и по- требление электроэнергии. Трансформатор. Электромагнитное поле. Электромагнитные волны. Передача информации с помощью электромагнитных волн.

Решение задач на переменный электрический ток: характеристики переменного тока, электрические машины, трансформатор. Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация.

Излучение и прием электромагнитных волн (1 час).

Электромагнитная волна и энергия электромагнитной волны. Свойства электромагнитных волн, и их применение.

Оптика (5 часов).

Законы геометрической оптики. Линзы. Построение изображений с помощью линз. Глаз и оптические приборы. Интерференция света. Дифракция света. Цвет. Невидимые лучи.

Задачи на применение законов геометрической оптики: прямолинейного распространения света, отражения, преломления света. Применение к решению задач по геометрической оптике общих

принципов, на примерах, соображений симметрии, обратимости хода луча, принципа Ферма. Решение задач на применение формулы тонкой линзы. Задачи на оптические системы и оптические приборы (лупа, микроскоп, телескоп, фотоаппарат).

Волновая оптика (5 часов).

Задачи по фотометрии и законам освещенности. Задачи по волновой оптике с примерами расчетов скорости света. Качественные и расчетные задачи на дисперсию, интерференцию, дифракцию и поляризацию света.

Зарождение квантовой теории. Законы фотоэффекта. Применение фотоэффекта. Строение атома. Теория атома Бора. Атомные спектры. Лазеры. Корпускулярно-волновой дуализм.

Задачи на использование обобщенной формулы Бальмера. Задачи на использование модели атома водорода по Бору. Задачи на вычисление длины волны де Бройля. Задачи на определение электронной конфигурации и терма основного состояния элементов начала периодической системы элементов. Задачи на использование закона Мозли.

Задачи на законы Стефана-Больцмана, Вина. Задачи на уравнение Эйнштейна для фотоэффекта. Использование представлений о волнах де Бройля для выяснения вопроса о том, квантовой или волновой теорией нужно пользоваться для описания конкретного явления. Задачи на определение характеристик фотонов: массы, импульса, определяемых спомощью закона взаимосвязи и энергии. Качественные задачи по явлению люминесценции, световому давлению и химическому действию света.

Релятивистская механика (2 часа).

Определение времени в разных системах отсчета. Одновременность событий. Световые часы. Собственное время. Физический смысл постулатов теории относительности. Законы сохранения массы и энергии. Объяснение уменьшения энергии имассы излучающих тел и увеличения массы тел при нагревании.

Физика атомного ядра (3 часов).

Атомное ядро. Радиоактивность. Радиоактивные превращения. Объяснение свойств ядер и характера их распада. Ядерные реакции. Энергия связи. Дефект масс. Деление ядер урана. Ядерный реактор. Классификация элементарных частиц. Открытие позитрона. Античастицы.

Задачи на расчет дефекта массы и энергетического выхода ядерных реакций. Задачи на применение законов сохранения энергии и заряда к ядерным реакциям. Задачи на применение закона радиоактивного распада.

5. Тематическое планирование

№ п/п	Тема занятия	Кол-во часов
	Электродинамика и электричество (18)	
1	Задачи на применение закона сохранения заряда и закона Кулона.	1
2	Задачи на применение понятий напряженности, потенциала и разности потенциалов электростатического поля.	1
3	Задачи на описание электрического поля различными средствами: силовыми линиями, эквипотенциальнымиповерхностями.	1
4	Решение задач на описание систем конденсаторов и расчет характеристик конденсаторных цепей.	1
5	Задачи на расчет энергии электрического поля.	1
6	Задачи на различные методы расчета сопротивления электрических цепей постоянного тока.	1
7	Задачи разных видов на описание электрических цепейпостоянного тока с помощью закона Ома для замкнутой цепи, закона Джоуля – Ленца.	1
8	Задачи разных видов на описание электрических цепей постоянного тока с помощью законов последовательного ипараллельного соединений.	1

9	Решение задач на расчет участков цепей, содержащих ЭДС.	1
10	Задачи на иллюстрацию идеи относительности по отношению к средствам наблюдения на примере разных показаний электроизмерительных приборов при различных способах их включения в цепь.	1
11	Задачи на описание постоянного электрического тока в электролитах, вакуу-	1
	ме, газах, полупроводниках: характеристика носителей, вольтамперная	-
	характеристика, характеристика конкретных явлений и др.	
12	Качественные задачи на исследование магнитного поля	1
12	постоянного тока. Задачи на закон Ампера.	1
13	Задачи о движении заряженных частиц в электрическом и	1
13	магнитном полях.	1
14		1
14	Качественные и расчетные задачи на описание явленияэлектромагнитной	1
	индукции, на закон электромагнитной	
1.5	индукции, на правило Ленца.	1
15	Качественные и расчетные задачи на использование	1
1.0	понятия индуктивности, на расчет энергии магнитногополя.	
16	Задачи на Формулу трансформатора	1
	Колебания и волны (13)	
17	Задачи на определение характеристик гармонических	1
	колебаний.	
18	Задачи на применение основного уравнения динамики	1
	колебательного движения к анализу поведения маятниковразличных конст-	
	рукций (математического и пружинного).	
19	Задачи с использованием формулы периода колебаний	1
	математического маятника.	
20	Задачи на сложение колебаний и резонанс.	1
21	Задачи на применение законов сохранения энергии и	1
	импульса к колебательному движению.	
22	Задачи о распространении продольных и поперечных	1
	механических волн в упругих средах.	
23	Задачи на расчет характеристик звуковых волн.	1
24	Решение задач на переменный электрический ток: характеристики пе-	1
	ременного тока, электрическиемашины, трансформатор.	
25	Задачи на описание различных свойств электромагнитных волн: скорость, от-	1
	ражение, преломление, интерференция,	
	дифракция, поляризация.	
26	Задачи на применение законов геометрической оптики:прямолинейного рас-	1
	пространения света, отражения, преломления света.	-
27	Применение к решению задач по геометрической оптике общих принципов,	1
	на примерах, соображений симметрии, обратимости хода луча, принципа	-
	Ферма.	
28	Решение задач на применение формулы тонкой линзы. Задачи на оптиче-	1
20	ские системы и оптические приборы (лупа, микроскоп, телескоп, фотоаппа-	•
	рат).	
29	Задачи по фотометрии и законам освещенности.	1
30	Задачи по фотометрии и законам освещенности. Задачи по волновой оптике с примерами расчетов скорости	<u>1</u> 1
50	света.	1
31	7.	1
JI	Качественные и расчетные задачи на дисперсию, интерференцию, дифракцию и поляризацию света.	1
	Атомная физика (3 часа)	
32	Задачи на уравнение Эйнштейна для фотоэффекта. Задачи	1
34	на определение характеристик фотонов: массы, импульса, определяемых с	1
	помощью закона взаимосвязи и энергии.	

33	Задачи на расчет дефекта массы и энергетического выходаядерных реакций.	1
	Задачи на применение закона радиоактивного распада.	
34	Задачи на применение законов сохранения энергии и	1
	заряда к ядерным реакциям.	
	Всего:	34

6. Учебно-методическое и материально-техническое обеспечение курса

- 1. Парфентьева Н.А.Сборник вопросов и задач по физике: Учебное пособие. М: Просвещение, 2020
- 2. Рымкевич А.П. Физика. Задачник 10-11 классы. Пособие для общеобразоват. учрежд.- М: Дрофа, 2013
- 3. Комплекты электронных учебников по всем разделам дисциплины физика. Обучающие и тестирующие программы
- 4. Лабораторное оборудование кабинета физики и центра образования естественнонаучной направленности «Точка роста».